Multiresolution Network Databases

Experience in Maryland and Delaware

Ohio Travel Demand Model Users Group Meeting

March 19, 2021

- WRA's approach to Network Database Management Multiresolution Databases
 - Multi Geographic scale of resolution
 - Examples of applications
- How was it implemented
- Network Management / Network Building quandary at ODOT

Why does it matter?

- Simplify the network building process to support multiple geographic scales of modeling and tools
 - Statewide
 - MPO
 - Project Applications of TDM
- Create vertical integration with data sources
 - Project databases
 - MPO <-> Statewide Models
 - Centerline / Route Data
- Saves Time
- Reduces Error

Why does it matter?

- Common data platform to create networks to support: statewide model, regional model networks, project models and meso and micro tools
- Manage transportation related data in one place to support several tools
 - Create efficiency in the development of specific networks
 - Make models more sensitive to the built environment
 - Bring together multiple users
 - Modeling / forecasting
 - Operations
 - Planning
 - Policy Makers

- Three elements:
- 1. A network and TAZ data structure that can scale the level of detail for the area being modeled up or down as needed.
- 2. Create consistency in data on shared geography.
- 3. Accuracy of data at all resolutions.

Resolution

Resolution

Multi-Resolution Modeling

APPLICATIONS

Project Needs

DelDOT

- Multi-Resolution
- Accessibility changes
- Urban form
- Scenario Planning
- ITHIM Data
- Link Level Walking Trips
- Link Level Biking Trips
- TID Evaluations
- Evacuation Models
- POD Models

MDOT SHA

- Link Travel Network to Centerline File and Data
- Software Neutral Dataset
- Create Inputs
 - Four Step Model
 - Activity Based Model
 - DTA Model
 - Microsimulation Models
- Project Evaluation Model
- Evacuation Models
- Expedite Project Forecasting
- Performance Measurement
 Dashboard

Forecasting

- Challenges with using travel demand model outputs for traffic forecasting:
 - Network detail and accuracy
 - Accuracy of land use and access points
 - Scale of projects

Forecasting

Forecasting – Multi Resolution

- Base year calibration and validation conducted to meet target values (traffic counts) for study area segments and regional screenlines
- Model refinements may include:
 - o Link additions
 - o Link speed and/or capacity modifications
 - Centroid connector modifications
 - Traffic analysis zones (TAZs) disaggregation
- Base and future year no build models reviewed to reflect highway and transit improvements for the appropriate year
- For future year build, study project (or alternatives) coded into model network to determine traffic impacts
- Base & future year trip tables (daily and/or peak period) used as the seed matrices for VISUM modeling

Forecasting – Multi Resolution

 Use of Multi Resolution modeling framework to create subarea trip tables for input to operational analysis modeling

Project Prioritization

- Even playing field for all project types
- Operational projects in context of macro assignment
 - Capacity adjustments
 - Roadway functional class improvements
- Consistency

MD - Project Overview

- Legislative mandate directing the Maryland DOT to develop a project-based scoring model for evaluating major highway and transit capacity projects over \$5 million in the Draft and Final CTP.
- Nine goals and twenty-three measures shall be evaluated against in the project-based scoring model (Chapter 30).
- All major transportation projects must be scored using the Chapter 30 Model in order to be considered for funding in the CTP.

	Job Accessibility	Fuel Savings	Travel Time Savings
Congestion	Х		Х
Environmental		Х	
Economic	Х		
Equitable Access	Х		
Cost Effectiveness			Х

MSTM Chapter 30 Multi Resolution Framework

- Assumptions of Chapter 30
 - Fixed Demand
 - No Build Supply Assumption
 - Consistent Platform
 - Calculation of Metrics
 - Consistent approach for all projects (urban vs rural and improvement vs new facilities)
- Project Challenges
 - Time Constraint and Volume of Projects
 - Consistency in Approach: projects, mode and consultants
 - Resolution of performance measures

Resolution Requirement

MSTM Chapter 30 Multi Resolution Framework

- Builds upon MSTM
 - Use of Trip Tables and Network Structure
- Consistent methodology
 - Speed and Capacity logic
 - Assignment methodology (trip purposes, tolling, period definitions)
- Flexibility in resolution
- Focused to network changes
- Linkage to Chapter 30 Scoring
- Multi Resolution Framework brings
 - Sensitivity to the network
 - Impacts of land use by smaller TAZs
 - Resolution of the performance measures

MSTM Chapter 30 Multi Resolution Framework

Resolution to Support Scoring

- Vehicle Miles Traveled
 - Link level calculation and aggregation of auto and truck VMT across a consistent study area under build and no build conditions
- Travel Time Savings
 - Calculation of vehicles hours traveled
 - By Auto and Truck
 - By Purpose
 - By Period Congestion
 - Delay: Congested VHT Free Flow VHT
 - Build Delay No Build Delay
- Fuel Savings
 - Vehicle Miles Traveled by Speed
 - Auto and Truck
 - Aggregated across a consistent study area for build and no-build conditions

DE - Project Overview

- Delaware's use of the multi resolution modeling framework includes:
 - Developing traffic forecasts
 - Non Motorized Accessibility
 - Project Prioritization
- Project Prioritization: adding the economic benefit to the measures currently used with TREDIS
 - County level analysis
 - Evaluation of the CTP Projects (2021 to 2026) of different project magnitudes
 - New Roadways
 - Major Widenings
 - Intersection improvements
 - Non motorized / transit projects

DE – Project Overview

- Looks at Existing and Proposed Bicycle Connectivity to
 - Transit
 - Schools
 - Community Centers
 - Employment Centers
 - Parks
- Looks at improvements at different Levels of Traffic Stress
- Allows us to directly compare the value of projects, for connecting people to places.

- A metric of suitability of a roadway for cycling
- Each level relates to a type of rider
- Allows us to view mobility from perspective of casual cyclists and understand *barriers* to a useful, connected network

- Level of Traffic Stress
 - LTS1: 12-year-old child
 - LTS2: typical person able to bike
 - LTS3: enthusiastic and willing to tolerate some stressful roadways and intersection
 - LTS4: aggressive and willing to bike anywhere

- Origin-to-Destination (OD) routing, on each LTS level
- Evaluates **Propensity Score** (0-1), for each OD Pair, based on *route distance* and *detour from shortest possible route*
- Measure improvement between different scenarios
- Results scaled and ranked relative to one another

"Visualization represents standalone project results overlayed, not scenario accessibility improvement results

Multi-Resolution Modeling

IMPLEMENTATION

Options Considered in Design

- Model Software
 - Travel demand model to manage network data as either binary network or in a geodatabase
- GIS
 - Manage data in a GIS environment with routines to export to software specific formats
- 3rd Party
 - Use of licensed third party networks

Options Considered in Design

	Travel Demand Software	GIS	3 rd Party Network
Software Neutral	Low	High	Medium
Data Integration – Long Term Maintenance	Low	High	Low
Flexibility for Post Processing and User Interface	Medium	High	High
Transferability between users	Medium	High	Low

Approach – Data Assembly

- Geography
 - Statewide Centerline and Route Data
 - Current Models
 - Statewide Networks (PA, and DE)
 - ORNL Network

- Attributes
 - Geographic sources
 - Existing Models (x-walk)
 - Centerline data

- Built from Centerline file
 - Association of Route, MSTM v1 and other source datasets to Centerline segmentation
- Creation of segmentation to support model network requirements

Application – MDOT SHA

- Graphical User
 Interface
 - Selection of resolution
 - Definition of buffer area for resolution transition
 - Management of selectin process
 - Selection of attribute scheme
 - Model year, and scenario
 - Include transit data

Application – MDOT SHA

Q MultiResolution_ModelGeneration.mxd - ArcMap

- 0 X

WRA

Application – MDOT SHA

MultiResolution_ModelGeneration.mxd - ArcMap

Zone selection complete

WRA

MultiResolution_ModelGeneration.mxd - ArcMap

WRA

Closing Thoughts – ODOT Network Solution

- Challenges
 - Ability to build off multiple data-sources
 - Centerline
 - MPO
 - Etc.
 - Identification of projects to include in network
 - State projects
 - MPO & other local projects
 - Network coding
 - How to manage in group environment
 - Network management
 - Networks for different purposes
 - Different combinations of projects in a given scenario

Questions

Scott Thompson-Graves sthompson-graves@wrallp.com

> Jonathan Avner javner@wrallp.com

Mike DuRoss michael.duross@state.de.us

STATE HIGHWAY ADMINISTRATION

Lisa Shemer Ishemer@sha.state.md.us

Mark Radovic Mradovic@sha.state.md.us