Using Both NPMRDS (Performance Measurement) and New XD Network Data for Network Speed Fields/model validation for the 2020 Base Year:

Sam Granato, Ohio DOT

The full proposal:

- Floating car data still good for the initial speed coding.
- On freeways & rest of NHS <u>NPMRDS</u> data (already used for PM3) has separate speeds for auto and <u>truck</u>.
- Rest of road system –<u>XD network</u> has both more <u>granularity</u> than TMC (0.42 m average segment length vs 1.35 m) & more roadway <u>coverage</u> (53,000 directional miles statewide vs 35,000), especially in smaller MPOs.

....but what to do about too <u>much</u> granularity for modeling in the XD network?

- Model segments may conflate to very small XD segments.
- How to properly aggregate XD road segments for this use?
- (can avoid for freeways, NPMRDS uses the TMC network)

Means of developing aggregated XD road segments for travel models:

- First part a "semi-automated" aggregation of road segments in GIS statewide* between major (within-XD) intersections.
- Second part a (optional) manual application specific to each MPO region – a function of local network geography plus further aggregation of segments by corridor, mostly by checks to see if any model road segments still conflate to significantly smaller XD road segments.

• *-including out-of-state portion of bi-state regions

GIS procedure for segment aggregation:

- Break up statewide XD network in 2, based on cardinal (NB/EB bearing) vs non-cardinal directions.
- Find # of links at each node, connect dis-jointed segments
- Filter out short links without network continuity (or data).
- A "Simplify" procedure to aggregate segments between intersections (reduces the number of XD segments by over 2/3rds).

Preliminary procedure for subsequent manual aggregations:

- Conflate (overlay & tag) aggregated XD segment names and lengths to model network road segments, see which segments have joined to XD segments that are <u>significantly</u> shorter.
- Per HCM guidance for urban streets, flag aggregated XD segments still < 1 mile as <u>potential</u> for further manual aggregation within a corridor.

As before, don't expect to see <u>that</u> much difference <u>overall</u> in speed/travel time by time of day:

"Coming Attractions:" Use of data to reestimate Congestion/HCM Level of Service

- HCM over time trending toward use of average/FF speeds across road types (though LOS threshold values still vary considerably by road type).
- Recent data "explosion" means a lack of stability in results over time.
- May need different level of aggregation in XD segments than for models.

Use of GPS Trip & Waypoint Data for Route Choice Analysis and Other Applications

Sam Granato, Ohio DOT

The Road Not Taken, 999th ed.

2 roads diverged past the Office of the Examiner
1 had turbulent traffic flow, the other quite laminar
The clues of the scour were apparent near here
And that has made all the difference quite clear

Information available:

• <u>Trip file:</u>

- Start & end point date and time
- Start & end point lat/lon values
- Travel distance & vehicle type
- Device and Provider ID#s

• Waypoint file:

- Trip ID# & (joined) XD segment
- Date/time & lat/lon values
- (Instantaneous) speed

Use of this "trajectory" data, to date:

• City of Columbus:

- Vehicle dwell times & locations for EV charging stations.
- Traffic signal coordination/performance measures.

• <u>Ohio DOT:</u>

- Traffic volume K and D factors.
- O/D travel route choice.
- Trip-level travel time reliability.
- Delay at Railroad crossings.
- Vehicle acceleration/deceleration rates "in the field."

Started with trip & waypoint data for two smaller urban areas with detailed data on modeled travel paths....

Trip lengths by vehicle class:

• Many are "short bursts" (exp. smartphone app use) that for most applications would get filtered out.

Distribution of Trips by average waypoint density (sample of small urban arterials):

Trip/Waypoint file filtering for route choice and trip-level reliability:

- Focus for this application on <u>cars</u> and on <u>surface streets.</u>
- Criteria not "hard & fast" (balance ideal w/sample size).
- Filtered out 95% of car trips (down to about N=25,000).

B-Route Choice, and Trip-level travel time reliability (for cars only)

Field	_	
Vehicle Class	1	
OD_CONCAT (on MPO network)	<>null,	N>9 (at least 10 records meeting specs to then use WP file)
Seconds per waypoint:	<15	
Average FRC value	>=2	(avoid Interstates, which are not within either UZA)
Number of waypoints	>39	(affects accuracy of measured trip distance)
Percent of waypoints snapped to XD	>69	(focus more on trip record side data for B)
Trip average speed kph	15-80	(10-50 mph, to keep the focus on arterials)
Distance from trip start/end to model	network	node <0.25 m
Minimum Trip distance	(O/D m	odeled shortest distance) – D2StartNode - D2EndNode
Maximum Trip distance	(O/D m	odeled distance on shortest time path *(3.14157/2)) <u>+ j</u> oin distances
Travel time (seconds)	>480	(i.e. the longer the trip, the less the join distance matters)

Example of "wholesale" filtering for trip distance (vs O/D network distance)

- Trip circuity as indicator of "intermediate" stops.
- Arc-based formula (+ distance to & from the modeled network) removed about 10% of the Trips in the file (manual reviews were then conducted for the most frequently observed travel paths).

Results found to date (1 of 2):

- Top 12 O/D movements by (filtered) sample size below.
- Some "intermediate stops" easier to detect than others.
- Occasional issues with modeled vs observed travel time (in large part due to sampled vehicle driver).

									From trav	el deman	d model:			Percent d	li
			Observe	d (GPS) tr	avel time a	and dista	nce	Observed travel path: Estimate			d shortest path:		between s		
Orig	Dest		Avg.Dist	Std Dev	Avg.time	Std Dev	XD net**	Avg.Dist	Avg.time	Std Dev	Avg.Dist	Avg.time	Std Dev	and GPS	p
Node	Node	Ν	(miles)		(minutes)		Avg.time	(miles)	(minutes)		(miles)	(minutes)		Distance	ļ
117	300	31	5.4	0.1	10.1	1.12		5.7	10.1	2.62	5.5	10.1	2.62	3.8%	
3199	201	27	14.4	0.2	19.3	2.16		14.5	20.0	4.14	11.2	17.7	4.74	29.6%	
1011	40	32	6.6	0.2	12.8	2.42	11.3	6.4	10.6	2.25	6.4	10.6	2.25	0.0%	
769	250	52	3.7	0.1	8.2	1.24		3.7	8.5	2.14	3.7	8.5	2.14	0.0%	
237	2220	17	11.5	0.2	22.1	2.79	20.0	11.9	18.9	3.97	11.8	18.7	3.64	0.5%	
863	1038	21	10.6	0.1	16.2	1.34		11.0	15.7	3.85	7.4	15.5	3.50	48.9%	
2182	410	18	12.2	0.1	16.3	1.05		12.4	18.1	3.84	11.9	16.9	4.21	4.2%	
462	572	16	5.7	0.1	9.8	0.69		6.3	9.4	2.36	5.1	9.0	2.24	24.7%	
1038	543	12	6.8	0.1	13.7	0.76		7.1	13.0	2.64	6.3	12.6	2.68	14.2%	
2313	635	11	12.3	0.2	19.1	1.91		13.4	21.2	4.76	12.6	21.2	4.76	6.1%	
1044	912	8	13.2	0.1	24.0	1.71		13.6	22.8	5.48	12.6	20.1	4.51	7.6%	
1058	1492	8	7.0	0.1	13.8	1.77	11.1	7.1	11.6	2.59	7.0	11.6	2.59	1.2%	
Overa	ll avera	ige:	9.1	0.1	15.4	1.58		9.4	15.0	3.39	8.5	14.4	3.32	11.7%	

O/D pairing example #1 (> 30 trip records)

- 2 more trips clearly have an intermediate stop (not filtered).
- Modeled time = time from data.

O/D pairing (still using example #1):

The (most) observed travel path is estimated to have the most "reliable" travel time, 2nd best for average travel time, and 12th best for distance.

O/D pairing example #2: 29 trip records

• 2 trips followed the shortest distance path, rest on a path maximizing freeway distance - not minimizing either total time or distance.

Example of O/D pair that was not used.

Results found to date (2 of 2):

• Identical result to more extensive study done at Univ. of Minnesota regarding relative importance of time and distance (1/3 of travelers on shortest time path, none on shortest distance path unless identical to shortest time).

					From travel demand			d model:			Percent d	lifference	
Observe	d (GPS) tr	avel time	and dista	nce	Observed travel path: Estima			Estimate	d shortest	path:	between shortest		
Avg.Dist	Std Dev	Avg.time	Std Dev	XD net**	Avg.Dist	Avg.time	Std Dev	Avg.Dist	Avg.time	Std Dev	and GPS	paths (mod	lel)
(miles)		(minutes)		Avg.time	(miles)	(minutes)		(miles)	(minutes)		Distance	Avg.time	Avg +SD
5.4	0.1	10.1	1.12		5.7	10.1	2.62	5.5	10.1	2.62	3.8%	0.4%	0.0%
14.4	0.2	19.3	2.16		14.5	20.0	4.14	11.2	17.7	4.74	29.6%	13.0%	7.5%
6.6	0.2	12.8	2.42	11.3	6.4	10.6	2.25	6.4	10.6	2.25	0.0%	0.0%	0.0%
3.7	0.1	8.2	1.24		3.7	8.5	2.14	3.7	8.5	2.14	0.0%	0.0%	0.0%
11.5	0.2	22.1	2.79	20.0	11.9	18.9	3.97	11.8	18.7	3.64	0.5%	1.1%	2.4%
10.6	0.1	16.2	1.34		11.0	15.7	3.85	7.4	15.5	3.50	48.9%	1.3%	2.9%
12.2	0.1	16.3	1.05		12.4	18.1	3.84	11.9	16.9	4.21	4.2%	7.3%	4.1%
5.7	0.1	9.8	0.69		6.3	9.4	2.36	5.1	9.0	2.24	24.7%	5.4%	5.4%
6.8	0.1	13.7	0.76		7.1	13.0	2.64	6.3	12.6	2.68	14.2%	2.9%	2.1%
12.3	0.2	19.1	1.91		13.4	21.2	4.76	12.6	21.2	4.76	6.1%	0.0%	0.0%
13.2	0.1	24.0	1.71		13.6	22.8	5.48	12.6	20.1	4.51	7.6%	13.4%	14.9%
7.0	0.1	13.8	1.77	11.1	7.1	11.6	2.59	7.0	11.6	2.59	1.2%	0.0%	0.0%
9.1	0.1	15.4	1.58		9.4	15.0	3.39	8.5	14.4	3.32	11.7%	3.7%	3.3%

Any insight from a more "wholesale" analysis of the trip records without <u>any</u> manual review?

- Cursory comparison of measured Trip times and distances with (modeled) shortest paths found a closer comparison to shortest <u>distances</u> instead – is it due to differences in driver/trip purposes (largest O/D sample sizes used were all in the AM peak period), or is it the lack of "weeding out" the intermediate stops?
- If trip <u>purpose</u> is the reason, than we might see a pattern in terms of the <u>hour of day</u> the Trip is made.
- A more abbreviated filtering of Trips was conducted, based on "constrained" values of measured/modeled trip times.

.....But no significant difference by TOD was found

- X-axis=hour of day, y-axis=average distance (7-9 miles) or average times (11-14 minutes).
- So there's still a need to "manually" review records.

Conclusion: "further research is needed"

- So far, minimizing travel time still more important than minimizing distance for traffic assignment, with the impact of the variability (reliability) of travel time somewhat smaller (light congestion levels in tested regions).
- Observed variability in O/D travel time considerably less than estimates used for modeling. (Likely due to little or no heterogeneity in sampled vehicle drivers by O/D pairing.)
- Need better/more extensive filtering of intermediate stops before moving to a more "wholesale" analysis of the full data set.

Questions?

RR grade crossing delay analysis:

- <u>Typically, RRX delay filtered out</u> of GPS travel time data for road segments. So, hoped to use waypoints to find delay to motorists as well as general pattern of train arrivals.
- Can be difficult to see these patterns, esp. when road or rail volumes are low, or other sources of delay are nearby.
- <u>Specific locations could be estimated when consecutive waypoints are</u> <u>found to have no "spot speed</u>." Data needs review for directionality relative to the crossing and not due to other causes. (And max trip "delay" of 10 minutes.)

Sample RRX: NS crossing @ Remington Ave

- Double-track, Xing about 800' SW of traffic signal @ US 6.
- AADT=6,000, estimated 94 trains/day (avg. 4/hour).
- Waypoints from 3,300 vehicle trips were mapped within 500 feet of the crossing in 2018, about 15% of the trips had at least one waypoint with no travel speed (after filtering).

Sample use of consecutive waypoints to solve a modeling question:

SIMPLE CASE OF UNIFORM TRAIN HEADWAY AND CHARACTERISTICS:

A = TIME THE RR CROSSING IS BLOCKED

B = TIME FOR THE VEHICLE QUE TO CLEAR

C = TIME BETWEEN TRAINS (A < B << C)

SAMPLE VALUES: A = 2.15 MINUTES, B = 2.4 MINUTES, C = 15 MINUTES

AVERAGE DELAY = 0.22 MINUTES

STD. DEVIATION = 0.47 MINUTES, CV = 2.1

ESTIMATE FROM REMINGTON AVE WAYPOINT DATA:

AVERAGE DELAY = 0.13 MINUTES

STD. DEVIATION = 0.44 MINUTES, CV = 3.5

TRAVEL MODEL'S CV EQUATIONS FOR PATH-BUILDING:

FREEWAY: CV = 0.16 * (t/to)^1.02 * ((dist)^-.39)

SURFACE STREET: CV = 0.106 * (t/to)^.776 * ((dist)^-.122)

(SURFACE STREET W/<u>RRX?</u>: data suggests use constant term of around 3.3 - or around 2.8 if reducing distance coefficient value to zero.)

CONSECUTIVE-WAYPOINT STOP DELAY AT NS RRX ON REMINGTON AVENUE, SANDUSKY

File filtering for vehicle acceleration profiles:

- Criteria used for vehicle acceleration profiles are shown below: focus on tight waypoint spacing.
- Only <u>9</u> truck Trips (of 2.2 million) and <u>90</u> car Trips (of 600,000) met the criteria...

A—Vehicle Acceleration Profiles

Field	Car	Truck:	
Vehicle Class	1	3	
Seconds per waypoint:	=1.0	<1. <mark>3</mark>	(ideally 1.0 per second, but no truck trip records meet that)
Average FRC value	>=3.5	>=2	(avoid freeways, but US30 as well as US42&SR13 are FRC=2)
Number of waypoints	>299	>99	(need large number to find some accel/decel locations)
Pct snapped waypoints	>74	>49	(so that trucks are not just found in parking lots?)
Trip average speed kph	31-60		(already down to just <mark>9</mark> truck records
Max trip speed kph	<100		
OD_CONCAT (on MPO net)	<>null		<i>u u</i>

• Sample car speed record from waypoints every second.

• Range of car (left) and truck (right) values of change in MPH per second, sorted by value:

Puzzling to find (so far) that accel rates = decel rates, and rates for cars = rates for trucks . . .

K & D factors:

Sample RRX: CSX@SR 161 near Don Scott

- 4600' e/o airport entrance, 800' w/o signal @ Linworth Rd.
- AADT=8,000, estimated 30 trains/day.
- Waypoints from 336 EB trips were found within 400 feet of RRX in 2016, 10% of the trips had at least one waypoint w/no travel speed (after filtering).

