#### **ODOT CAV Research and Analysis**

Rob Bostrom Ybette Ochoa Nathan Shay

*September 9, 2022* 





### **Presentation Overview**

- Background
- Literature Review

#### Marysville Model Development

- Modeling CAVs
- US 33 Overview
- Data Collection
- Traffic Simulation

#### Marysville Model Scenario Analysis

- Regionwide Results (TDM)
- Systemwide Results (Vissim)
- Post Peak Performance
- Simulations

#### Findings and Recommendations

### **Background and Study Team**

- Rebekah Straub ODOT PM
- Literature Review
  - CDM Smith
  - Steve Shladover
  - Delft University
  - HDR
  - Caliper Corporation
- Base Model & Scenario Models
  - HDR
  - CDM Smith



# Lit Review Insights

### **Big Picture Insights from Literature Review**

- 2019 Status
- Long implementation time
- VMT will likely increase
- Technology gaps
- Priority research needs IDed
- Scenario analysis using models
- CAV rollout will be transformational and disruptive.
- Costs will impact rollout time.
- Private ownership is up in the air.



### **Modeling Insights from Literature Review**

- TDM/Simulation process is needed.
- Review of capacity and other key parameters
- Specific adjustments to VISSIM and TransModeler identified
- Simulation will allow key parameters to be tested and tweaked.
- Scenarios identified based on
  - Model year
  - Penetration rates
  - MAAS variability
- Need for risk analysis

### **ODOT CAV Simulation Literature Review**

- Spreadsheet of relevant documents
- Results published in TFResource Wiki
  - <u>https://tfresource.org/topics/Content\_Charrette\_Autonomous\_Vehicl\_es.html</u>



# Modeling CAVs

### **Travel Demand Modeling**

- Modeling in the Past:
  - Travel behavior and mode choice trends for next 20-30 years relatively stable
  - Model calibration calibrated with survey data and validated with existing mode usage
- Now with CAVs:
  - New mode(s) with different behavior, different impacts
  - Travel Demand Modeling is being changed by the new analytical demands
- Travel Demand Models can be enhanced to handle most CAV uncertainties:
  - Models help understand range of futures and potential policies
  - CAV treated as a mode
  - This study utilized the 3C models developed by ODOT and WSP

### **How CAVs Impact Modeling**

- Travel Demand:
  - Decreased financial cost of trip (shared vehicles)
  - Decreased value of time lost to commutes
  - Ability for new users to travel
  - Zero occupancy travel
- Potential Factors:
  - Level of autonomy
  - Adoption of shared transportation
  - User age limits
  - Road user charges

- Traffic Operations:
  - Platoon formation
  - Highway entry and exit
  - Signal operations
  - Crash reduction and coordinated incident response
- Potential Factors:
  - Fleet adoption
  - Sophistication of AV sensors
  - V2V communications
  - Availability of V2I communications

#### **How Specific Applications Impact Traffic Operations**

| AV Applications                             | Traffic Operations                  | CV Applications                                            |
|---------------------------------------------|-------------------------------------|------------------------------------------------------------|
| Vehicle inputs                              | Platooning with Reduced<br>Headways | V2V coordination, V2I speed harmonization                  |
| Traffic signal recognition, vehicle inputs  | Signalized Corridor<br>Operations   | SPaT data, adaptive signal control, green light glide path |
| Lane and object recognition, vehicle inputs | Merging Operations                  | V2V coordination, routing intent                           |
| Lane assignment recognition, vehicle inputs | Managed Lanes                       | Dynamic lane assignment                                    |
| Incident recognition,<br>vehicle inputs     | Incident Management                 | V2I alerts and coordinated responses                       |

### **Simulation of CAVs in Ohio**

#### Vissim

- Adjustments to internal parameters and Car
   Following made. Used in numerous CAV-related
   research studies.
- Marysville corridor (US-33 near Columbus)

- TransModeler
- Allows new vehicle classes equivalent to
   SAE levels. Used with adjustments documented in FHWA study
- Brent Spence Bridge (I-75/I-71 in Cincinnati)



### US 33 Introduction

### Ohio Corridor Studies – Statewide and Marysville (US 33)







### US 33 Factoids

- Columbus to Marysville
  - City of Dublin (east of I-270) to West of Marysville
  - 35miles long, 62 intersections and interchanges
- Honda plant in West has spurred many innovations including wiring the entire corridor (signals and stop signs)
- Other studies going on concurrently include
  - US 33 Corridor Study/20-year LRTP
  - Ohio's Smart Mobility Corridor

### **Parallel Project**

Ohio's 33 Smart Mobility Corridor

https://www.33smartcorridor.com/





**Existing and Proposed Smart Infrastructures** 



### Data Collection

### **Data Collection**

- Traffic counts
- Signal info and speeds
- MORPC Model (Regional model) Work
  - SE Data
  - Model expansion
  - Select links

### **Traffic Counts**

#### Data sources

- ODOT 2019 TMCs. Classified counts for 20 intersections.
- MS2 ODOT online count database
- Data smoothing/factoring
  - Growth rates
  - Balancing
  - Used PM only



### **MORPC Model Socioeconomic Data**

 MORPC assumptions on population and employment are used and show light growth from 2018 to 2050 (16-19%).





# **Traffic Simulation**

### **Modeling Flow**

- Model preparation
  - MORPC (MPO) model study area expansion, SE modifications, review of CCs and network
  - US 33 simulation model
    - Create Base Year model extensive data collection
    - Validate using MPO ODs and other sources
- Run scenarios (14)
- Produce Performance Measures

#### **Base Year Microsimulation Model Development**



#### **Base Year Model Development**

- Base model includes geometry, signal info, traffic data and speed data.
- Validation
  - Used MORPC study area expansion volumes and select links for routing review
- CAV customization
  - Adding platoon logic slide on platoon formation follows
  - Future may include dynamic elements
    - Speed zones
    - Conflict areas that activate on vehicle to infrastructure messaging

#### **Steps to Develop Microsimulation Model Vehicle Inputs and Routing**





# Marysville Scenario Analysis

### **Developing and Using CAV Scenarios**

- Stakeholders OHIO DOT, DriveOhio, MPOs
  - Involve stakeholders in review and detailed definitions of scenarios
  - Penetration rates, TNC levels, SE changes,
- Performance Measures
  - Define measures to use in analyzing scenarios
  - Typical:
    - Vehicle Miles Traveled (VMT)
    - Vehicle Hours Traveled (VHT)
    - Travel time
  - Others: equity,
- Use TDMs and simulation models to produce output.

#### **AV Adoption Rate Scenario Levels**



Source: HDR

#### **Analysis Scenarios – Part 1**

|                          | Scenario Name                  | Year | %HH with<br>level 5 CAV | CAV<br>Proportion<br>of TNC fleet | TNC CAV Price<br>Discount (%) |  |  |  |  |
|--------------------------|--------------------------------|------|-------------------------|-----------------------------------|-------------------------------|--|--|--|--|
|                          | No Build Scenarios             |      |                         |                                   |                               |  |  |  |  |
| 11                       | No Build                       | 2035 |                         |                                   |                               |  |  |  |  |
| 12                       | No Build                       | 2050 |                         |                                   |                               |  |  |  |  |
| 2035 Mid-Range Scenarios |                                |      |                         |                                   |                               |  |  |  |  |
| 1                        | Slow CAV growth                | 2035 | 5%                      | 5%                                | 30%                           |  |  |  |  |
| 2                        | Conservative TNC Adoption      | 2035 | 5%                      | 10%                               | 30%                           |  |  |  |  |
| 3                        | DriveOhio Mid Term CAV         | 2035 | 10%                     | 20%                               | 30%                           |  |  |  |  |
| 3X                       | No Build (scenario 11) Volumes | 2035 | 10%                     |                                   |                               |  |  |  |  |
| 2050 Mid-Range Scenarios |                                |      |                         |                                   |                               |  |  |  |  |
| 6                        | DriveOhio Long Term CAV        | 2050 | 10%                     | 80%                               | 50%                           |  |  |  |  |
| 7                        | Moderate Private CAV Adoption  | 2050 | 30%                     | 20%                               | 50%                           |  |  |  |  |
| 7X                       | No Build (scenario 12) Volumes | 2050 | 30%                     |                                   |                               |  |  |  |  |
| 8                        | Aggressive CAV Adoption        | 2050 | 60%                     | 80%                               | 50%                           |  |  |  |  |
| 8X                       | No Build (scenario 12) Volumes | 2050 | 60%                     |                                   |                               |  |  |  |  |
| 8X All<br>Knowing        | No Build (scenario 12) Volumes | 2050 | 60%                     |                                   |                               |  |  |  |  |
| Increase Scenarios       |                                |      |                         |                                   |                               |  |  |  |  |
| 9                        | Road Capacity Increase         | 2050 | 10%                     | 40%                               | 30%                           |  |  |  |  |
| 10                       | Population Increase            | 2050 | 10%                     | 80%                               | 50%                           |  |  |  |  |

### **Analysis Scenarios – Part 2 (100% Penetration)**

| A1* | 2050 No Build 100% CAV                                                           | 2050 | 2050 No Build           | 100% | NA | NA |
|-----|----------------------------------------------------------------------------------|------|-------------------------|------|----|----|
| A2  | 2050 No Build 100% CAV with CAV Behavior Changes Behavior                        | 2050 | 2050 No Build           | 100% | NA | NA |
| A3* | 2050 No Build 100% CAV with CAV<br>Behavior Changes and Capacity<br>Improvements | 2050 | 2050 No Build           | 100% | NA | NA |
| B1* | 2050 100% CAV                                                                    | 2050 | 2050 100% CAV           | 100% | ΝΑ | NA |
| В2  | 2050 100% CAV with Capacity Improvements                                         | 2050 | 2050 100% CAV           | 100% | ΝΑ | NA |
| C1* | 2050 100% CAV with Additional Lane                                               | 2050 | 2050 100% CAV<br>+ Lane | 100% | NA | NA |
| C2  | 2050 100% CAV with Additional Lane and Capacity Improvements                     | 2050 | 2050 100% CAV<br>+ Lane | 100% | ΝΑ | NA |



# Regionwide Results (TDM)

### **Regionwide TDM Results: Total Trips**



#### Zero Occupancy Vehicles



### **Regionwide TDM Results: VMT**

PM Peak Period VMT By Scenario



### **Regionwide TDM Results: VHT**













# Systemwide Results (VISSIM)

#### **Focus Scenarios Description**

| #                  | Scenario<br>Name                                | Year | TDM<br>Scenario<br>Demand<br>Source | %HH<br>with<br>level<br>5<br>CAV | CAV<br>Proportion<br>of TNC<br>fleet (%) | TNC CAV Price Discount<br>(%) |  |
|--------------------|-------------------------------------------------|------|-------------------------------------|----------------------------------|------------------------------------------|-------------------------------|--|
| No Build Scenarios |                                                 |      |                                     |                                  |                                          |                               |  |
| Existing           | 2018 Existing<br>No Build                       | 2018 | 2018 No<br>Build                    | 0%                               | 0%                                       | 0%                            |  |
| 12                 | 2050 No Build<br>0% CAV                         | 2050 | 2050 No<br>Build                    | 0%                               | 0%                                       | 0%                            |  |
| 2050 Mid-          | Range Scenarios                                 | s    |                                     |                                  |                                          |                               |  |
| 7                  | 2050 30%<br>CAV                                 | 2050 | 2050<br>30%                         | 30%                              | 20%                                      | 50%                           |  |
| 8                  | 2050 60%<br>CAV                                 | 2050 | 2050<br>60%<br>CAV                  | 60%                              | 80%                                      | 50%                           |  |
| 8X All-<br>Knowing | 2050 No Build<br>60% CAV All-<br>Knowing        | 2050 | 2050 No<br>Build                    | 60%                              | NA                                       | NA                            |  |
| A2                 | 2050 No Build<br>100% CAV<br>with CAV           | 2050 | 2050 No<br>Build                    | 100%                             | NA                                       | NA                            |  |
| B2                 | 2050 100%<br>CAV with<br>Capacity               | 2050 | 2050<br>100%<br>CAV                 | 100%                             | NA                                       | NA                            |  |
| C2                 | 2050 100%<br>CAV with<br>Additional<br>Lane and | 2050 | 2050<br>100%<br>CAV +<br>Lane       | 100%                             | NA                                       | NA                            |  |

### **100% Penetration Simulation Fixes**

- Lane by lane driver behavior assignment
- Increased gaps between leading vehicles
- Removed platoons at merge areas
- Removed platoons at dual-left turn storage at the US 33/Frantz Road intersection.
- This caused the creation of scenarios A1/A2, B1/B2 and C1/C2.

### **Systemwide Results for VMT**



### Systemwide Results for Demand (PM Peak Hour) (Active + Arrived + Latent)



### **Systemwide Results for Delay Total**



### **Travel Time US-33: Entire Corridor WB**



### Travel Time US-33: Entire Corridor EB (35.3 mi)





### Post Peak Hour Performance

### **US-33 Throughput: East and West of Avery Road**

|                                                                                 | We    | est of Avery                     | East of Avery |                                  |  |
|---------------------------------------------------------------------------------|-------|----------------------------------|---------------|----------------------------------|--|
| Scenario                                                                        | WB    | % Difference from<br>Scenario 12 | WB            | % Difference from<br>Scenario 12 |  |
| Scenario 12: 2050 No Build 0%<br>CAV                                            | 4,719 | -                                | 6,584         | -                                |  |
| Scenario 7: 2050 30% CAV                                                        | 4,754 | 0.8%                             | 6,783         | 3.0%                             |  |
| Scenario 8: 2050 60% CAV                                                        | 4,665 | -1.1%                            | 6,725         | 2.1%                             |  |
| Scenario 8X All-Knowing: 2050 No<br>Build 60% CAV All-Knowing                   | 5,467 | 15.9%                            | 7,622         | 15.8%                            |  |
| Scenario A2: 2050 No Build 100%<br>CAV with CAV Behavior Changes<br>Behavior    | 6,080 | 28.9%                            | 8,187         | 24.3%                            |  |
| Scenario B2: 2050 100% CAV with Capacity Improvements                           | 5,992 | 27.0%                            | 8,211         | 24.7%                            |  |
| Scenario C2: 2050 100% CAV with<br>Additional Lane and Capacity<br>Improvements | 7,058 | 49.6%                            | 8,722         | 32.5%                            |  |

# Systemwide Results: Latent Demand Results with Additional After-Peak Hours



### US 33 EB Results: Travel Time Results with Additional After-Peak Hours



### US 33 WB Results: Travel Time Results with Additional After-Peak Hours





# Key Findings and Recommendations

### **Key CAV Findings**

- TDM results show that 1% increase in CAV increase total trips by 0.1%
- 60% penetration (8X)
  - Improved throughput of ~15% on the most congested section of the US 33 corridor
  - Reduced travel time of 4 minutes in the EB direction and 1.5 minutes in the WB direction during the peak hour
  - Returns to normal travel time conditions 2 hours earlier in the EB direction and 45 minutes earlier in the WB direction
  - CAVs (without induced traffic) does not s help improve conditions in the peak (WB) but does during the post peak hours
- 100% penetration
  - Distinct operational and capacity improvements
  - A2 shows that capacity gains offset traffic growth except for induced traffic
  - Scenario B serves induced traffic w/ exception of urbanized area east of I-270
  - Scenario C with extra lane worked well except on I-270 ramps, simulation has trouble routing on ramps with splits. It was necessary to adjust configurations and timings at the 33/Frantz intersection.

### **US 33 Inspired Follow-up Studies**

- Dedicated CAV lanes
- Vehicle-to-Infrastructure communication impacts
- Additional analysis of arterials
- Improve capability of adding TNCs to mix
- Additional analysis of merging operations and platooning; CDM
  Smith will perform research for North Texas Toll Authority on this topic
- Consider SE impacts; sensitivity analysis for today's SE conditions
- Develop new performance measures (e.g., additional trips adding mobility gains)

### **Potential Travel Demand Model Considerations**

- West end of study area is an external station giving "edge of study" problems.
- Very low rate in TNC adoption, due to base year data limitations.
- As one travels from west to east, increases in induced demand.
- As demand increases, 0-occupancy demand increases almost linearly.
  More investigation might be needed.
- More granular analysis of ABM outputs might give understanding of:
  - Non-HBW trip purposes
  - VMT increases
  - Car ownership
  - O-occupancy trips
  - Increase in traffic due to reduction of driving ability restrictions?

### **Connected Vehicle Considerations**

#### Isolation of V2I capabilities

- Platooning vs. V2I speed harmonization
- AV traffic signal recognition vs. V2I SPaT data
- Improved adaptive signal performance with V2I data
- Green light glide path on signalized corridors
- AV merging vs. cooperative V2V merging



# Questions