
NEW APPLICATIONS OF AI 

TO TRAVEL DEMAND MODELING



THE STATISTICAL STATUS QUO

▪ Travel Models are Statistical Models

– Travel models are built out of classical statistical models like regression and 

logit models

– Travel models use goodness-of-fit statistics like r2 and log likelihood, so they 

must be statistical

– Travel models have been around for longer than machine learning / AI –

hence, they couldn’t use machine learning
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THE STATISTICAL STATUS QUO

▪ Travel Models are Statistical Models

– Travel models are built out of classical statistical models like regression and 

logit models

– Travel models use goodness-of-fit statistics like r2 and log likelihood, so they 

must be statistical

– Travel models have been around for longer than machine learning / AI – 

hence, they couldn’t use machine learning

▪ But…

– Travel models began as computer algorithms – that later found statistical 

theory – like a lot of machine learning / artificial intelligence… 
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WHAT’S THE DIFFERENCE?

▪ Classical Statistics vs. Machine Learning / AI

– More Culture than Math

– Understanding vs. Predicting

– Single Dataset vs. Multiple Datasets

– Low Dimensionality vs. High Dimensionality

– Parametric vs. Nonparametric
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WHY AI?

▪ For Travel Forecasting
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WHY AI?

▪ For Travel Forecasting

• Prediction, Prediction, Prediction

─ For planning & engineering, not a pure science

• Multiple Datasets 

─ Surveys AND Counts AND Big Data

• High Dimensionality

─ Location x Location x Location

• Nonparametric 

─ Because of Constraints and Equilibrium

─ Reality of Multiple Optima
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KEY INSIGHTS OF 

ARTIFICIAL INTELLIGENCE
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KEY INSIGHTS OF AI 

▪ Ensemble Modeling

▪ Nonparametric Methods

▪ Regularization

▪ Semi-Supervised Learning

▪ Overparameterization
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ENSEMBLE MODELING

▪ Two models are better than one!

▪ Models can be combined in parallel

or in sequence

▪ All models are wrong, 

but different models are 

wrong in different ways

▪ Combining multiple models can use offsetting errors to 

compensate for the weaknesses of one model with the 

strengths of another and vice versa
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AVOID PARAMETRIC ASSUMPTIONS

▪ Turns out those “benign” assumptions often matter

▪ Specification Error!  Omitted Variable Bias
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PREDICTION, NOT REPLICATION

▪ Out-of-Sample or External Validity

– Does the model generalize?  

▪ Travel Modeling Desperately Needs to Take this In

– Goal is to predict the future, not replicate the present (base year)

▪ “Regularization” Methods (How to Avoid Over-fitting)

– Holdout samples (split data into training and testing sets)

– k-fold cross-validation 

– Loss (error) function penalties (lasso, ridge, elastic net)

– Dropout, etc.  

– Early stopping (training, tuning, testing)
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SEMI-SUPERVISED LEARNING

▪ Reducing specification error by learning not just the 

parameters of the model (coefficients of the formula) 

but the structure of the model (the terms and 

structure of the formula)

▪ One key aspect of this is dimensionality reduction

– Principal Component Analysis (PCA) from traditional statistics

– Discriminant Analysis (LDA, GDA) 

– Filter and Wrapper Methods (correlation, variance filters, RFE, backwards FE)

– Embeddings (word2vec, POI2vec, etc.) 
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OVERPARAMETERIZATION

▪ “Impossible” Double Descent 
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APPLICATIONS TO 

TRIP GENERATION
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TRIP GENERATION USING DECISION TREES

▪ First tested and implemented for the NC Research Triangle 

model in 2021

▪ Since then, implemented for a few MPOs around the country

– Las Vegas, NV

– Reno, NV

– Wichita, KS

▪ Now, more advanced hybrid regression / multi-class decision 

tree models being developed for NC statewide model

▪ Colby Brown has also experimented with using ChatGPT to 

generate activity patterns
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TRIP GENERATION BY DECISION TREES

▪ The game of 20 Questions

▪ Advantages of Decision Trees

– Sensitivity

• Age

• Neighborhood / Accessibility

• Income 

• Vehicle ownership

• Household composition 

– Nonlinear effects 

– Full survey support

• No empty cells like with cross-class
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COMPARISON WITH TRADITIONAL MODELS

▪ Tested classical stats & 

plain AI methods
– Cross-classification 

– GLM (up to and including 

zero-inflated negative binomial)

– Logit (ordered logit)

– Extreme Gradient Boosted 

Decision Trees (XGBoost)  

▪ Chosen approach: Explainable Artificial Intelligence (XAI)

– ANOVA-based Rationalized Decision Trees 

– Explainable, reasonable relationships between trip rates and explanatory variables

– Confidence that the model is not over-fit to the data
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Model Type Pseudo R2

Logit 0.03

GLM (Regression) 0.22

Cross-Class 0.33

XGBoost 0.60

XAI ANOVA Decision Tree 0.53

Example: School Trips



PBHRDC MODELS

▪ Currently testing new ensemble 

methods for NC statewide model

▪ Form of doubly-boosted model

▪ Regression on continuous variables 

expected to affect everyone 

(income, age, accessibility)

▪ Decision tree on first residual 

using categorical variables (gender, 

employment, marital status, etc.)

▪ Asserted tree on “personas”
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Regression

Decision Tree

Personas



REGRESSION

▪ Age

▪ Income
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DECISION TREE

▪ ANOVA-based 

Decision Tree
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PERSONA CONSTANTS

▪ Constant (average second residual) for each “persona”
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FHWA TMIP PROJECT
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OVERVIEW OF PROJECT 

▪ Project to improve travel forecasting through the use 

of big data and AI

– Review of literature and practice 

– Testing new methods  

– Implementation pilot projects with case studies 

– “Playbook” for incorporating AI in travel models 

– TMIP webinars to promote Playbook methods 

▪ Current Status: Finalizing Task 2 Report: 

Report on Methods and Applications of AI and Big Data 

to Enhance Travel Forecasting
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PROJECT FOCUS

▪ Focus on AI

– References to TMIP resources on big data

▪ Focus on Practical Improvements 

for the Near- to Mid-Term

– Methods to improve/replace 

individual model components

– AI-DCMs

– Primary focus on Destination Choice

• Largest source of error in existing models 

– largest opportunity for improvement
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CALIPER TEAM LEADERSHIP
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EXPERT PANEL
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ARTIFICIAL INTELLIGENCE – 

DISCRETE CHOICE MODELS
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AI-DCM MODELS

▪ Artificial Intelligence – Discrete Choice Models

▪ Combine neural networks and logit models

▪ Attempt to combine the best of both traditional and newer 

methods

– Theoretical basis and interpretability of traditional models

– Explanatory power and accuracy of AI

▪ Six types proposed so far

– L-MNL

– ResLogit

– TB-ResNet
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– TasteNet

– RUMnets

– e-Logit



AI-DCM RECOMMENDATIONS

▪ Goals for destination choice

– Allow for bounded (imperfect) rationality 

while avoiding highly irrational behavior

– Capture cross-effects between alternative destinations 

▪ Recommending TB-ResNets and L-MNL be tested for 

destination choice

▪ TasteNet may also offer some improvement for mode choice
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TB-RESNETS

▪ Ensemble of Logit and Deep NN

▪ Interpretable as a logit or DNN

▪ Utilities weighted average of logit 

and DNN

▪ Weight estimable from data
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L-MNL

▪ Uses NN to model 

alternative specific constant 

(average residual error) 

similar to boosting

▪ Or, decomposes systematic 

utility into traditional 

theoretical part and data 

driven part
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NEURAL NETWORKS FOR 

DESTINATION CHOICE
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▪ Identified 326 papers from 1993 to present

▪ Explosion of papers from 2016, peaking in 2020, 

stabilized around 2018-19 levels

▪ Needed to prioritize, mostly based on citation rates

▪ Cursory review of 108 papers and 18 surveys/reviews

▪ Currently report summarizes of 25 papers 

– Plus brief overview of 15 early papers

– And appendix with 13 paper summaries

▪ Conducted formal meta-analysis of 107 published models
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CLASSIFYING PAPERS
▪ Year of publication

▪ Academic lineage / literature cited – seven major branches of literature were identified based 
on literature cited

▪ Type/subject domain of journal/conference – papers were categorized based on whether the 
journal / conference they appeared in was focused on 
– transportation, 

– geography/GIS, 

– data science, or 

– something else 

▪ Application (Data Type)
– All travel (GPS/LBS trace data, travel surveys)

– Commuting (Surveys/administrative records on commuting)

– Transit ODs (Smartcard data) 

– Taxi/TNC/Ride-hailing (Taxi/TNC data)

– Social Point-of-Interest (Location-based social networking (LBSN) data) 

▪ Problem formulation 
– Direct demand

– Singly constrained 

– Doubly constrained 

▪ Methodology – over a dozen neural network methods/architectures were identified
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HISTORY

▪ Papers varied significantly over time 

and across communities of researchers

▪ Before 2015, 60% published in 

transportation or geography journals

▪ Since 2015, over 80% published in data 

science journals (6% transp. & geog.)

▪ Commercial applications for TNCs and 

location-based marketing

▪ Development of deep learning
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PROBLEM FORMULATION

▪ Degrees of Freedom / Constraints

– Direct Demand / Unconstrained models try to predict both level and 

distribution of OD demand

– Singly-Constrained models try to predict distribution of OD demand given 

constraint to one marginal (number of trips generated/produced) 

– Doubly-Constrained models try to predict distribution of OD demand given 

constraint to both marginals

▪ Extremely uneven coverage in the literature

▪ Unclear if comparisons are fair
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BRANCHES OF THE LITERATURE

▪ Eight branches of the literature

– Based on citations, but vary across many dimensions
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BRANCHES METHODOLOGICAL FOCUS
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▪ Branch A

– Mostly published in geography/GIS and 

transportation journals

– Initially focused on commuting, later various 

applications

– Direct demand models

– Mostly focused on simple MLPs



▪ Branch B

– Mostly published in data science journals

– Initially focused on taxi/TNC, shifted to 

transit trips

– Direct demand models

– Initially focused on simple MLPs, later 

incorporated more advanced methods



    

    

    

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

   

   

  

  
  

      

   

  

   
   

   

   

  

   

   

   

   

   

   
   

   

   

   

   

   

  

     

   

  

   

   
   

  

   

   

   

   

      

  

   

   

  

  

   

   

  

  

      
   

  

   

   

  

    

   

   

   



    

    

    

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

   

   

  

  
  

      

   

  

   
   

   

   

  

   

   

   

   

   

   
   

   

   

   

   

   

  

     

   

  

   

   
   

  

   

   

   

   

      

  

   

   

  

  

   

   

  

  

      
   

  

   

   

  

    

   

   

   

▪ Branch C
– 80% published in data science journals

– Initially focused on taxi/TNC, later also 
social POI

– Singly constrained models

– Initially proposed RNNs, later CNNs,  
NLP, Attention, but no GNNs



    

    

    

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

   

   

  

  
  

      

   

  

   
   

   

   

  

   

   

   

   

   

   
   

   

   

   

   

   

  

     

   

  

   

   
   

  

   

   

   

   

      

  

   

   

  

  

   

   

  

  

      
   

  

   

   

  

    

   

   

   

▪ Branch D
– Published in transportation 

journals

– Focused on taxi/TNC trips

– Direct demand models

– Just RNN and CNN variations



    

    

    

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

   

   

  

  
  

      

   

  

   
   

   

   

  

   

   

   

   

   

   
   

   

   

   

   

   

  

     

   

  

   

   
   

  

   

   

   

   

      

  

   

   

  

  

   

   

  

  

      
   

  

   

   

  

    

   

   

   

▪ Branch E

– Over 90% in data science journals

– Focused on social POIs

– Singly constrained models

– Initially RNN variants, then NLP 

and attention, GNN starting in 

2019 and in most since 2021



    

    

    

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

   

   

  

  
  

      

   

  

   
   

   

   

  

   

   

   

   

   

   
   

   

   

   

   

   

  

     

   

  

   

   
   

  

   

   

   

   

      

  

   

   

  

  

   

   

  

  

      
   

  

   

   

  

    

   

   

   

▪ Branch F

– Published in data science journals

– Focused on social POIs

– Singly constrained models

– Initially GNN variants, then RNN 

components later



    

    

    

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

   

   

  

  
  

      

   

  

   
   

   

   

  

   

   

   

   

   

   
   

   

   

   

   

   

  

     

   

  

   

   
   

  

   

   

   

   

      

  

   

   

  

  

   

   

  

  

      
   

  

   

   

  

    

   

   

   

▪ Branch H
– Initially in transportation, later also 

data science journals

– Initially focused on taxi/TNC trips

– Direct demand models

– Focus on GNN variants (plus 
RNN components)



META-ANALYSIS

▪ Estimated scores for 107 models

▪ Based on 472 comparisons in 51 papers using 112 datasets

▪ Initial score calculated as normalized average of ratio of 

model’s goodness-of-fit to other models

▪ Final score by minimizing squared error of relative 

comparisons 

▪ Final modeled scores achieved a r2 = 0.848

▪ No accounting for authorship bias?
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SYNTHETIC SCORE RATIOS VS. PUBLISHED
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SYNTHETIC SCORE RATIOS VS. PUBLISHED
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MAJOR PAPERS WITH META-ANALYSIS SCORES (1)

ID Paper Model
Final 
Score

Initial 
Score Year Cites  

Cites 
/ Year Journal Type Metric(s) Constraint Application

C1 De Brébisson et al. (2015) RNN 0.25 0.46 2015 254 28.2 Data Science Distance 1 Taxi/TNC
E1 Liu et al. (2016) ST-RNN 0.28 0.44 2016 1049 131.1 Data Science k-Recall, k-F1, MAPE, AUC 1 Taxi/TNC
F1 Xie et al. (2016) GE 0.04 0.50 2016 440 55.0 Data Science k-Accuracy 1 All Check-ins
B3 Zhao et al. (2016) MLP 0.51 0.43 2016 170 21.3 Data Science sMAPE 0 Taxi/TNC
D1 Toque et al. (2016) LSTM 0.24 0.41 2016 145 18.1 Transport MSE 0 Transit OD
E2 Al-Molegi et al. (2016) STF-RNN 2016 90 11.3 Data Science k-Recall 1 All Travel
E5 Yang et al. (2017a) PACE 0.30 0.40 2017 366 52.3 Data Science k_Hit, k-Prec., k-Rec., k-nDCG, k-MAP 1 All Check-ins
X1 Yin et al. (2017) SH-CDL 0.41 0.68 2017 300 42.9 Data Science k-Accuracy, MAE 1 All Check-ins
E3 Yao et al. (2017) SERM 0.30 0.46 2017 225 32.1 Data Science k-Hit 1 All Check-ins
E4 Yang et al. (2017b) JNTM 0.33 0.55 2017 184 26.3 Data Science k-Recall 1 All Check-ins
C3 Wu et al. (2017) RNN 0.52 0.46 2017 168 24.0 Data Science LL, Accuracy 1 Taxi/TNC
C2 Lv et al. (2017) T-CONV 0.29 0.48 2017 117 16.7 Data Science Distance 1 Taxi/TNC
E6 Feng et al. (2018) DeepMove 0.42 0.53 2018 684 114.0 Data Science Accuracy 1 All Check-ins

E10 Ying et al. (2018) SHAN 2018 418 69.7 Data Science k-Recall, AUC 1 All Check-ins
E7 Kong and Wu (2018) HST-LSTM 0.30 0.54 2018 266 44.3 Data Science k-Accuracy 1 All Travel

E15 Chang et al. (2018) CAPE 0.31 0.52 2018 215 35.8 Data Science k-Recall, MRR 1 All Check-ins
X4 Chu et  al. (2018) MultiConvLSTM 0.34 0.50 2018 174 29.0 Transport RMSE, sMAPE 0 Taxi/TNC
F2 Wang et al. (2018a) GeoIE 0.35 0.48 2018 161 26.8 Data Science k-Recall, k-Precision 1 All Check-ins

E13 Ma et al. (2018) SAE-NAD 2018 151 25.2 Data Science k-Precision, k-Recall, k-MAP 1 All Check-ins
G1 Ouyang et al. (2018) NPGN 1.00 1.00 2018 146 24.3 Data Science JSD 1 All Travel
E8 Manotumruska et al. (2018) CARA 0.30 0.46 2018 144 24.0 Data Science k-Accuracy, NDCG@10 1 All Check-ins

E12 Zhao et al. (2018b) ST-LSTM 0.36 0.55 2018 71 11.8 Data Science k-Accuracy, MAP 1 All Check-ins
A25 Pourebrahim et al. (2018) MLP 0.51 0.43 2018 47 7.8 Data Science RMSE All Check-ins
E11 Atlaf et al. (2018) STA-GRU 0.37 0.53 2018 32 5.3 Data Science k-Recall, k-NDCG, AUC, MRR 1 All Check-ins
B4 Wang et al. (2019) GEML 0.29 0.70 2019 275 55.0 Data Science RMSE, sMAPE 0 Taxi/TNC
C8 Rossi et al. (2019) NLP-LSTM 0.29 0.49 2019 114 22.8 Transport Distance 1 Taxi/TNC
D3 Liu et al. (2019a) ConvLSTM 0.31 0.47 2019 263 52.6 Transport RMSE, MAPE 0 Taxi/TNC
E20 Zhao et al. (2019a) STGCN 0.32 0.48 2019 484 96.8 Data Science k-Accuracy, MAP 1 All Check-ins
X5 Fang et al. (2019) GSTNet 0.33 0.51 2019 191 38.2 Data Science MAE, SMAPE Transit OD

E24 Huang et al. (2019) ATST-LSTM 0.46 0.60 2019 180 36.0 Data Science k-Precision, k-Recall, k-F1 1 All Check-ins
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MAJOR PAPERS WITH META-ANALYSIS SCORES (2)
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META-ANALYSIS RESULTS

▪ Best methods

– GAI

• GAN

• LLM

– SSL

– CNN

• CNN

• GCN

▪ GAI & SSL small sample size

▪ MLP (FCN) not bad

▪ Other methods not significant

58

Method Avg. Score
GAI 0.580
SSL 0.455
CNN 0.413
Attention 0.398
FCN 0.397
GNN 0.385
RNN 0.383
NLP 0.328

▪ Recommended models 

for testing in AI-DCMs

– DeepGravity (MLP), reference

– TrajGAN (GAN), highest score

– STHGCN (SSL GCN), #4 

highest score, highest non-GAI, 

score based on 8 comparisons



OTHER REPORT 

RECOMMENDATIONS
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PERFORMANCE MEASUREMENT

▪ Importance of Out-of-Sample (Holdout Sample) Validation

– Standard practice of good data science

– Extremely rare in travel forecasting practice

– Key opportunity to improve the practice

▪ Choice of Metric

– Huge variety of error 

/ goodness-of-fit metrics 

– Minimum Wasserstein distance

• Powerful in computer vision, with CNNs

• Gives credit for getting close
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SOFTWARE

▪ Language: Python

– Compatible with TransCAD, OpenPaths, VISUM

– Most widely used language for data science 

▪ Data Science Libraries: PyTorch vs.  Keras

– Scikit Learn – many ML/AI methods, but limited DNN

– Tensorflow – powerful, heavy-duty, complex, difficult to learn

– Keras – wrapper for Tensorflow

– PyTorch – more complex than Keras, simpler than Tensorflow
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DATA

▪ Proposed a taxonomy of variables and data sources

▪ Interested in expert panel feedback on the use / inclusion of 

variables and data sets as well as derived variables
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VARIABLES AND DATA SOURCES
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Acquisition Cost $$$$ $$ $$ $$ $$$ $$
Processing Cost $$ $ $ $$ $ $$ $$ $ $ $ $$ $

Individual Choices Common X X
Aggregate Choices Common X X X

Income Common X X
Auto ownership Common X X

Age Uncommon X X
Gender Uncommon X X

Family/household members Uncommon X X
Employment status Uncommon X X

Race Rare X X
Time-of-day Uncommon X

[Home location variables] Rare

Latent class Rare

Choice Observations

Choice-Maker / Context Variables
Primary Variables

Derived variables

63



64

Use

H
ou

se
ho

ld
 T

ra
ve

l 
Su

rv
ey

C
en

su
s 

C
om

m
ut

e 
Fl

ow
s

Ag
gr

eg
at

e 
Bi

g 
Da

ta

Di
sa

gg
re

ga
te

 B
ig

 
Da

ta

C
en

su
 G

IS
 D

at
a

C
on

fid
en

tia
l 

Q
C

EW
 D

at
a

C
om

m
er

ci
al

 
Es

ta
bl

is
hm

en
t 

Da
ta

O
pe

n 
PO

I D
at

a

C
om

m
er

ci
al

 
Vi

si
ta

tio
n 

Bi
g 

Da
ta

Pa
rc

el
 D

at
a

O
pe

n 
G

IS
 D

at
a

C
om

m
er

ci
al

 
Tr

av
el

 T
im

e 
Da

ta

Acquisition Cost $$$$ $$ $$ $$ $$$ $$
Processing Cost $$ $ $ $$ $ $$ $$ $ $ $ $$ $

Employment by Industry by Zone Standard X X
Demographics by Zone Standard X

Zoning category Uncommon X
Square footage Uncommon X X

Park area Uncommon X
Cemetery area Uncommon X

Water area & boundaries Uncommon X
State / County / City Uncommon X

Railroad Uncommon X
Land cover Rare X

Establishments by Industry by Zone Rare X X
Category Rare X X
Industry Rare X X

Employees Rare X X
Footfall / crowd flow Rare X

with sales Rare X
credit score Rare X

Accessibilities Uncommon
Land use diversities Uncommon

Densities Uncommon
Terrain Rare

Travel time & network distance Standard X X X

Boundary Crossings Uncommon
Similarity / Dissimilarity Rare

Primary Variables

Derived variables

Second Order (Two spatial indices; location pair attributes)
Primary Variables

Derived variables

Choice Alternatives (Location) Variables
First Order (Single spatial index, location attributes)



OTHER AI APPLICATIONS IN 

TRAVEL FORECASTING

65



TRIP / ACTIVITY GENERATION

▪ As with destination choice, most of the literature is in data 

science journals where the problem is most commonly called 

“crowd flow prediction”

▪ Some limited transportation literature

– Decision trees outperform traditional statistical models

▪ Most applications in the practice of any ML/AI methods

– May want to do a webinar in Task 5 on this
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MODE CHOICE

▪ Most extensive literature on AI/ML in transportation journals

– Perhaps 1,000 papers

▪ Most compare AI/ML method to logit

– Most comparisons lack a well-calibrated logit model

– Most tend to collapse transit sub-modes

▪ Most seemingly valid comparisons indicate AI/ML offer some, 

but modest improvements over logit

– Logit mode choice models generally perform well, 

hence limited room for improvement
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VOLUME PREDICTION

▪ Generally focused on short-term forecasting

▪ Generally rely on significant historical data

▪ Closely related to speed prediction 

▪ Many similar methods as in destination choice
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